MATLAB Obstacle avoidance new interface

Hello everyone,

I recently started using acados with MATLAB/Simulink and have been working through several examples to get familiar with the framework. I’ve now begun implementing my own project, where the goal is to create a vehicle controller that avoids obstacles.

The initial steps went smoothly — I managed to design a controller that enables the vehicle to follow a reference path. I then created an S-function and integrated it into my Simulink closed-loop environment.

However, I’ve run into an issue when trying to add quadratic constraints (e.g., defining a circular region that the vehicle’s Xp and Yp should avoid). When I include these constraints, the controller freezes and provides no inputs, causing the vehicle to continue in a straight line (through the obstacle).

I’ve tried various approaches, including implementing solutions shared on this forum, but none have resolved the problem. I’m wondering if anyone has suggestions or adjustments that could help.
I am currently controlling only the steering angle — could this be contributing to the issue?
Also I have tried defining ocp.cost.yref as different things, either having the entire reference path in the path cost term, or only putting the reference state at N as the cost for yref_e , both approaches don’t seem to fix the isseu.

This is my code for the creation of the ocp:

clear all; clc;
import casadi.*

check_acados_requirements()

% options needed for Simulink
if ~exist('simulink_opts','var')
    disp('using acados simulink default options')
    simulink_opts = get_acados_simulink_opts;
    % disp('using empty simulink_opts to generate solver without simulink block')
    % simulink_opts = [];
end

%% Load parameters (par)
par.g = 9.81;          
par.Reff     = 0.3035;              % wheel effective radius, m
par.mass     = 1380;                
par.Izz      = 2634.5;              
par.L        = 2.79;                
par.l_f      = 1.384;               
par.i_steer  = 15.4;                
par.l_r      = par.L - par.l_f;                   
par.Calpha_front = 120000; 
par.Calpha_rear  = 190000; 

par.V0 = 50/3.6;               
par.w0 = par.V0 / par.Reff;     

%% Horizon and sampling
Ts = 0.01;
N = 20; %20    % prediction horizon
T = N*Ts;  % horizon length
V0 = par.V0;

%% Create Model
model = car_PDM_model(par);

nx = length(model.x);
nu = length(model.u);

% Initial condition
x0 = [par.V0; 0; 0; 0; 0; 0; 0]; % vx, Xp, Yp, vy, yaw, r, delta

%% Create OCP model
ocp = AcadosOcp();
ocp.model = model;

%% Cost 
% Weights
w_vx = 1e-2;      
w_Xp = 1e0;    
w_Yp = 1e2;    
w_vy = 1e-2;      
w_yaw = 1e-2;     
w_r = 1e-2;       
w_delta = 1e-2; 
w_d_delta = 5e0;  

W_x  = diag([w_vx, w_Xp, w_Yp, w_vy, w_yaw, w_r, w_delta]);
W_u  = w_d_delta;

Xp_ref_terminal = par.V0 * Ts * N; % Final Xp reference

% initial cost term
ny_0 = nu;
ocp.cost.cost_type_0 = 'NONLINEAR_LS';
ocp.cost.W_0 = W_u;
ocp.cost.yref_0 = zeros(ny_0, 1);
ocp.model.cost_y_expr_0 = model.u;

% path cost term
ny = nx + nu;
ocp.cost.cost_type = 'NONLINEAR_LS';
ocp.cost.W = blkdiag(W_x, W_u);
ocp.cost.yref = [par.V0;zeros(nx,1)]; %[par.V0; Xp_ref_terminal*0.5; Xp_ref_terminal*0.5; 0; 0; 0; 0; 0]; % [vx; Xp; Yp; vy; yaw; r; delta]
ocp.model.cost_y_expr = vertcat(model.x, model.u); 

% % path cost term
% ny = nu;
% ocp.cost.cost_type = 'NONLINEAR_LS';
% ocp.cost.W = W_u;
% ocp.cost.yref = zeros(ny_0, 1); %[par.V0; Xp_ref_terminal*0.5; Xp_ref_terminal*0.5; 0; 0; 0; 0; 0]; % [vx; Xp; Yp; vy; yaw; r; delta]
% ocp.model.cost_y_expr = model.u; 

% terminal cost term
ny_e = nx;
ocp.cost.cost_type_e = 'NONLINEAR_LS';
ocp.model.cost_y_expr_e = model.x;
ocp.cost.yref_e = [par.V0; Xp_ref_terminal*0.5; Xp_ref_terminal*0.5; 0; 0; 0; 0]; % [vx; Xp; Yp; vy; yaw; r; delta]
ocp.cost.W_e = W_x;

%% Define constraints
mu = 1;

vx_thd      = 170 /3.6;           % absolute longitudinal velocity threshold (example)
beta_thd    = 5 * pi / 180;       % absolute sideslip angle threshold
d_beta_thd  = 25 * pi / 180;      % absolute sideslip angle rate threshold
d_vy_thd    = 0.85 * mu * par.g;  % absolute lateral acceleration threshold
delta_thd   = 2.67 * 360/180*pi/par.i_steer;  % max steering angle
d_delta_thd = 800 * pi/180/par.i_steer;       % max steering rate
 
% % Nonlinear constraints:
% % h = [vy/vx; dot(vy)/vx; dot(vy)+vx*r]
% h_expr = [vy/vx; dot_vy/vx; dot_vy + vx*r];
% ocp.model.con_h_expr = h_expr;
% ocp.constraints.lh = [-beta_thd; -d_beta_thd; -d_vy_thd];
% ocp.constraints.uh = [ beta_thd;  d_beta_thd;  d_vy_thd];
% 


% Bounds on delta (state)
% delta is state #7 (index_delta = 6)
% ocp.constraints.idxbx = [0 1 6];
% ocp.constraints.lbx = [0 -20 -delta_thd];
% ocp.constraints.ubx =  [vx_thd 114 delta_thd];
% lbx = reshape([zeros(1,N-1); repmat(-20,1,N-1); repmat(-delta_thd,1,N-1)]       ,1,[]);
% ubx = reshape([repmat(vx_thd,1,N-1); repmat(114,1,N-1); repmat(delta_thd,1,N-1)]     ,1,[]);

ocp.constraints.idxbx = [0 6];
ocp.constraints.lbx = [0 -delta_thd];
ocp.constraints.ubx =  [vx_thd delta_thd];


% Bounds on d_delta (input)
ocp.constraints.idxbu = 0; % only one input: d_delta
ocp.constraints.lbu = -d_delta_thd;
ocp.constraints.ubu =  d_delta_thd;


Xobs = 50;%114;    % Obstacle's X-position
Yobs = 0;%120;     % Obstacle's Y-position
R = 20;        % Minimum radius from the obstacle

h = [...
    (Xp-Xobs)^2+(Yp-Yobs)^2-R^2;...
];

% Assign the nonlinear constraint expression to the ocp model:
ocp.model.con_h_expr = h;
ocp.model.con_h_expr_0 = h;

% Set lower and upper bounds for h_expr, TODO: set uh to inf
ocp.constraints.lh = 0;        % h_expr_obs must be >= 0
ocp.constraints.uh = 1e9;      % a sufficiently large upper bound
ocp.constraints.lh_0 = 0;        % h_expr_obs must be >= 0
ocp.constraints.uh_0 = 1e9;      % a sufficiently large upper bound

ocp.constraints.x0 = x0;

%% Solver options
% define solver options
ocp.solver_options.N_horizon = N;
ocp.solver_options.tf = T;
ocp.solver_options.nlp_solver_type = 'SQP';
ocp.solver_options.integrator_type = 'ERK';
ocp.solver_options.qp_solver = 'PARTIAL_CONDENSING_HPIPM';
ocp.solver_options.qp_solver_mu0 = 1e3;
ocp.solver_options.qp_solver_cond_N = 5;
ocp.solver_options.hessian_approx = 'GAUSS_NEWTON';
ocp.solver_options.ext_fun_compile_flags = '-O2';
ocp.solver_options.globalization = 'MERIT_BACKTRACKING';
% ocp.solver_options.qp_solver_iter_max = 100
ocp.simulink_opts = simulink_opts;

ocp.solver_options.regularize_method = 'PROJECT_REDUC_HESS';
ocp.solver_options.nlp_solver_max_iter = 500;
ocp.solver_options.nlp_solver_tol_stat = 1e-2;
ocp.solver_options.nlp_solver_tol_eq = 1e-2;
ocp.solver_options.nlp_solver_tol_ineq = 1e-2;
ocp.solver_options.nlp_solver_tol_comp = 1e-2;
ocp.solver_options.qp_solver_warm_start = 1;

ocp_solver = AcadosOcpSolver(ocp);

% solver initial guess

x_traj_init = repmat(x0,1,N+1); 
u_traj_init = zeros(nu, N);

ocp_solver.set('constr_x0', x0);

t = Ts*(0:N);

[~, x_init, y_init] = reference_corner(par.V0, t);

if length(x_init) == 1
    x_init = repmat(x_init,1,N+1); 
end

if length(y_init) == 1
    y_init = repmat(y_init,1,N+1);
end

x_traj_init = reshape([repmat(par.V0,1,N+1);x_init;y_init;zeros(4,N+1)],1,[]);

% set trajectory initialization
ocp_solver.set('init_x', x_traj_init); % states
ocp_solver.set('init_u', u_traj_init); % inputs
ocp_solver.set('init_pi', zeros(nx, N)); % multipliers for dynamics equality constraints

% solve
ocp_solver.solve();
% get solution
utraj = ocp_solver.get('u');
xtraj = ocp_solver.get('x');

status = ocp_solver.get('status'); % 0 - success
ocp_solver.print('stat')

%% plots
ts = linspace(0, T, N+1);
figure; hold on;
states = {'vx', 'Xp', 'Yp', 'vy','yaw','r','delta'};
for i=1:4
    subplot(4, 1, i);
    plot(ts, xtraj(i,:)); grid on;
    ylabel(states{i});
    xlabel('t [s]')
end

figure; hold on;
for i=1:3
    subplot(3, 1, i);
    plot(ts, xtraj(i+4,:)); grid on;
    ylabel(states{i+4});
    xlabel('t [s]')
end

figure
stairs(ts, [utraj'; utraj(end)])
ylabel('d-{\delta}')
xlabel('t [s]')
grid on

Hi Maarten,

some remarks regarding your problem formulation:

  • include slacks for the nonlinear constraints to avoid infeasible subproblems as is done e.g. here
  • 'PROJECT_REDUC_HESS' is a preliminary implementation atm, try 'PROJECT'
  • use the acados-specific “infinity value” for one-sided constraints as is done e.g. here

Could you provide the output of solver.print('stat') after the call to solve? What is the solver status?

Best, Katrin

Hi Katrin,

Thanks for your reply, the addition of slack variables fixed the problem! The only question I have is why this is the case? As it seems that the values of this slack variable is 0, is this just something about how the solver works regarding to feasibility/optimization?

Hi Maarten,

acados implements a Sequential Quadratic Programming (SQP) approach, i.e. the nonlinear optimal control problem is iteratively solved by solving a sequence of quadratic approximations (quadratic programs, QP) of the nonlinear problem. The issue you observed suggest that some of these intermediate QPs are infeasible while the nonlinear problem is feasible.

Best, Katrin

1 Like