Hi @federico.pizarro ,
Here is a piece of code I was using half a year ago. I remember I got some meaningful results with this. But I no longer work on this now because I lost confidence in differentiable-MPC.
Hope this will be useful to you or other people.
import numpy as np
from acados_template import AcadosOcpSolver
from torch import nn
import torch
class AcadosMpcLayer(nn.Module):
r"""
Differentiable optimization layer with acados.
Solves an optimal control problem (OCP) using acados.
Following links are useful for implementation:
- Code structure is inspired from here: https://github.com/cvxgrp/cvxpylayers/blob/master/cvxpylayers/torch/cvxpylayer.py
- Instructions for extending pytorch function: https://pytorch.org/docs/stable/notes/extending.html#combining-forward-context
"""
def __init__(self, acados_ocp_solver: AcadosOcpSolver) -> None:
super(AcadosMpcLayer, self).__init__()
if acados_ocp_solver.acados_ocp.solver_options.hessian_approx != 'EXACT':
raise RuntimeError("The exact hessian must be used.")
if acados_ocp_solver.acados_ocp.solver_options.with_solution_sens_wrt_params is False:
raise RuntimeError("Sensitivity evaluation must be enabled in acados")
self.acados_ocp_solver = acados_ocp_solver
self.nx = acados_ocp_solver.acados_ocp.model.x.shape[0]
self.nu = acados_ocp_solver.acados_ocp.model.u.shape[0]
self.np = acados_ocp_solver.acados_ocp.model.p.shape[0]
def forward(self, x0: torch.Tensor, params: torch.Tensor) -> torch.Tensor:
# x should be of size (batch_size, nx)
f = _AcadosOcpLayerFunction(self.acados_ocp_solver)
sol = f(x0, params)
return sol
def _AcadosOcpLayerFunction(acados_ocp_solver: AcadosOcpSolver):
r"""
The implementation of AcadosOcpLayer.
:param acados_ocp_solver:
:return:
"""
class _AcadosOcpLayer(torch.autograd.Function):
@staticmethod
def forward(x0, params):
# x0 and params should be in batches
# Up to now, we only consider setting the same p for all stages
if not x0.shape[0] == params.shape[0]:
raise ValueError('Batch size mismatch')
batch_size = x0.shape[0]
# TODO: pay attention to the data type
u0 = torch.Tensor(batch_size, acados_ocp_solver.acados_ocp.dims.nu)
for batch in range(batch_size):
for stage in range(acados_ocp_solver.acados_ocp.dims.N):
acados_ocp_solver.set(stage, 'p', params[batch, :].cpu().numpy())
# RESET initial guesses (discard warm start)
for stage in range(acados_ocp_solver.acados_ocp.dims.N):
acados_ocp_solver.set(stage, 'x', np.zeros(acados_ocp_solver.acados_ocp.model.x.shape[0]))
acados_ocp_solver.set(stage, 'u', np.zeros(acados_ocp_solver.acados_ocp.model.u.shape[0]))
acados_ocp_solver.set(acados_ocp_solver.acados_ocp.dims.N, 'x', np.zeros(acados_ocp_solver.acados_ocp.model.x.shape[0]))
u_opt = acados_ocp_solver.solve_for_x0(x0[batch, :].cpu().numpy(), fail_on_nonzero_status=False)
if acados_ocp_solver.get_status() not in [0, 2]:
pdb.set_trace()
# if acados_ocp_solver.get_status() not in [0, 2]:
# for stage in range(acados_ocp_solver.acados_ocp.dims.N):
# acados_ocp_solver.set(stage, 'x', np.zeros(acados_ocp_solver.acados_ocp.model.x.shape[0]))
# acados_ocp_solver.set(stage, 'u', np.zeros(acados_ocp_solver.acados_ocp.model.u.shape[0]))
# u_opt = acados_ocp_solver.solve_for_x0(x0[batch, :].cpu().numpy(), fail_on_nonzero_status=False)
# pdb.set_trace()
u0[batch, :] = torch.tensor(u_opt)
return u0
@staticmethod
def setup_context(ctx, inputs, output):
x0, _ = inputs
batch_size = x0.shape[0]
ctx.batch_size = batch_size
ctx.nu = acados_ocp_solver.acados_ocp.dims.nu
ctx.nx = acados_ocp_solver.acados_ocp.dims.nx
ctx.np = acados_ocp_solver.acados_ocp.dims.np
@staticmethod
def backward(ctx, grad_output):
# The output of backward() function must be the same dimension as input arguments of forward
# Refer to: https://discuss.pytorch.org/t/a-question-about-autograd-function/201364
batch_size = ctx.batch_size
grad_u0_x0, grad_u0_p = None, None
if ctx.needs_input_grad[0]:
grad_u0_x0 = torch.Tensor(batch_size, ctx.nx).type(grad_output.dtype)
for batch in range(batch_size):
_, dudx0 = acados_ocp_solver.eval_solution_sensitivity(0, "initial_state")
grad_u0_x0[batch, :] = grad_output[batch] @ torch.tensor(dudx0, dtype=grad_output.dtype)
if ctx.needs_input_grad[1]:
grad_u0_p = torch.Tensor(batch_size, ctx.np).type_as(grad_output)
for batch in range(batch_size):
_, dudp = acados_ocp_solver.eval_solution_sensitivity(0, "params_global")
grad_u0_p[batch, :] = grad_output[batch] @ torch.tensor(dudp, dtype=grad_output.dtype)
return grad_u0_x0, grad_u0_p
return _AcadosOcpLayer.apply
Best,
Fenglong