C generated code from python interface

Hi Frey.
Thanks for the nice nlp control framework.

I’m trying to use c_generated code generated from the python code.
My ocp name is pp_mpcc so here is the c_generated files.

image

My goal is to get the same solver output from c code with that of obtained from python code.

Currently I’m using “main_pp_mpcc.c” but, solver returns different solutions compared to the python.
I put the initial value constraints used in Python into lbx0[n] and ubx0[n], and x_init was set as the same values with lbx0 and ubx0. The initial value u0 was 0.

Can you elaborate what i’m miss understanding and suggest what should I do?

Thank you for in advance.

The following is “main_pp_mpcc.c”.

Code
/*
 * Copyright 2019 Gianluca Frison, Dimitris Kouzoupis, Robin Verschueren,
 * Andrea Zanelli, Niels van Duijkeren, Jonathan Frey, Tommaso Sartor,
 * Branimir Novoselnik, Rien Quirynen, Rezart Qelibari, Dang Doan,
 * Jonas Koenemann, Yutao Chen, Tobias Schöls, Jonas Schlagenhauf, Moritz Diehl
 *
 * This file is part of acados.
 *
 * The 2-Clause BSD License
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 *
 * 1. Redistributions of source code must retain the above copyright notice,
 * this list of conditions and the following disclaimer.
 *
 * 2. Redistributions in binary form must reproduce the above copyright notice,
 * this list of conditions and the following disclaimer in the documentation
 * and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 * POSSIBILITY OF SUCH DAMAGE.;
 */


// standard
#include <stdio.h>
#include <stdlib.h>
// acados
#include "acados/utils/print.h"
#include "acados/utils/math.h"
#include "acados_c/ocp_nlp_interface.h"
#include "acados_c/external_function_interface.h"
#include "acados_solver_pp_mpcc.h"

// blasfeo
#include "blasfeo/include/blasfeo_d_aux_ext_dep.h"

#define NX     PP_MPCC_NX
#define NZ     PP_MPCC_NZ
#define NU     PP_MPCC_NU
#define NP     PP_MPCC_NP
#define NBX    PP_MPCC_NBX
#define NBX0   PP_MPCC_NBX0
#define NBU    PP_MPCC_NBU
#define NSBX   PP_MPCC_NSBX
#define NSBU   PP_MPCC_NSBU
#define NSH    PP_MPCC_NSH
#define NSG    PP_MPCC_NSG
#define NSPHI  PP_MPCC_NSPHI
#define NSHN   PP_MPCC_NSHN
#define NSGN   PP_MPCC_NSGN
#define NSPHIN PP_MPCC_NSPHIN
#define NSBXN  PP_MPCC_NSBXN
#define NS     PP_MPCC_NS
#define NSN    PP_MPCC_NSN
#define NG     PP_MPCC_NG
#define NBXN   PP_MPCC_NBXN
#define NGN    PP_MPCC_NGN
#define NY0    PP_MPCC_NY0
#define NY     PP_MPCC_NY
#define NYN    PP_MPCC_NYN
#define NH     PP_MPCC_NH
#define NPHI   PP_MPCC_NPHI
#define NHN    PP_MPCC_NHN
#define NPHIN  PP_MPCC_NPHIN
#define NR     PP_MPCC_NR


int main()
{

    pp_mpcc_solver_capsule *acados_ocp_capsule = pp_mpcc_acados_create_capsule();
    // there is an opportunity to change the number of shooting intervals in C without new code generation
    int N = PP_MPCC_N;
    // allocate the array and fill it accordingly
    double* new_time_steps = NULL;
    int status = pp_mpcc_acados_create_with_discretization(acados_ocp_capsule, N, new_time_steps);

    if (status)
    {
        printf("pp_mpcc_acados_create() returned status %d. Exiting.\n", status);
        exit(1);
    }

    ocp_nlp_config *nlp_config = pp_mpcc_acados_get_nlp_config(acados_ocp_capsule);
    ocp_nlp_dims *nlp_dims = pp_mpcc_acados_get_nlp_dims(acados_ocp_capsule);
    ocp_nlp_in *nlp_in = pp_mpcc_acados_get_nlp_in(acados_ocp_capsule);
    ocp_nlp_out *nlp_out = pp_mpcc_acados_get_nlp_out(acados_ocp_capsule);
    ocp_nlp_solver *nlp_solver = pp_mpcc_acados_get_nlp_solver(acados_ocp_capsule);
    void *nlp_opts = pp_mpcc_acados_get_nlp_opts(acados_ocp_capsule);

    // initial condition
    int idxbx0[NBX0];
    idxbx0[0] = 0;
    idxbx0[1] = 1;
    idxbx0[2] = 2;
    idxbx0[3] = 3;
    idxbx0[4] = 4;
    idxbx0[5] = 5;
    idxbx0[6] = 6;
    idxbx0[7] = 7;

    double lbx0[NBX0];
    double ubx0[NBX0];
    lbx0[0] = 0;
    ubx0[0] = 0;
    lbx0[1] = 0;
    ubx0[1] = 0;
    lbx0[2] = 0;
    ubx0[2] = 0;
    lbx0[3] = 50;
    ubx0[3] = 50;
    lbx0[4] = 0;
    ubx0[4] = 0;
    lbx0[5] = 0;
    ubx0[5] = 0;
    lbx0[6] = 0;
    ubx0[6] = 0;
    lbx0[7] = 0;
    ubx0[7] = 0;

    ocp_nlp_constraints_model_set(nlp_config, nlp_dims, nlp_in, 0, "idxbx", idxbx0);
    ocp_nlp_constraints_model_set(nlp_config, nlp_dims, nlp_in, 0, "lbx", lbx0);
    ocp_nlp_constraints_model_set(nlp_config, nlp_dims, nlp_in, 0, "ubx", ubx0);

    // initialization for state values
    double x_init[NX];
    x_init[0] = 0.0;
    x_init[1] = 0.0;
    x_init[2] = 0.0;
    x_init[3] = 0.0;
    x_init[4] = 0.0;
    x_init[5] = 0.0;
    x_init[6] = 0.0;
    x_init[7] = 0.0;

    // initial value for control input
    double u0[NU];
    u0[0] = 0.0;
    u0[1] = 0.0;
    // set parameters
    double p[NP];
    p[0] = 0;

    for (int ii = 0; ii <= N; ii++)
    {
        pp_mpcc_acados_update_params(acados_ocp_capsule, ii, p, NP);
    }
  

    // prepare evaluation
    int NTIMINGS = 1;
    double min_time = 1e12;
    double kkt_norm_inf;
    double elapsed_time;
    int sqp_iter;

    double xtraj[NX * (N+1)];
    double utraj[NU * N];


    // solve ocp in loop
    int rti_phase = 0;

    for (int ii = 0; ii < NTIMINGS; ii++)
    {
        // initialize solution
        for (int i = 0; i < N; i++)
        {
            ocp_nlp_out_set(nlp_config, nlp_dims, nlp_out, i, "x", x_init);
            ocp_nlp_out_set(nlp_config, nlp_dims, nlp_out, i, "u", u0);
        }
        ocp_nlp_out_set(nlp_config, nlp_dims, nlp_out, N, "x", x_init);
        ocp_nlp_solver_opts_set(nlp_config, nlp_opts, "rti_phase", &rti_phase);
        status = pp_mpcc_acados_solve(acados_ocp_capsule);
        ocp_nlp_get(nlp_config, nlp_solver, "time_tot", &elapsed_time);
        min_time = MIN(elapsed_time, min_time);
    }

    /* print solution and statistics */
    for (int ii = 0; ii <= nlp_dims->N; ii++)
        ocp_nlp_out_get(nlp_config, nlp_dims, nlp_out, ii, "x", &xtraj[ii*NX]);
    for (int ii = 0; ii < nlp_dims->N; ii++)
        ocp_nlp_out_get(nlp_config, nlp_dims, nlp_out, ii, "u", &utraj[ii*NU]);

    printf("\n--- xtraj ---\n");
    d_print_exp_tran_mat( NX, N+1, xtraj, NX);
    printf("\n--- utraj ---\n");
    d_print_exp_tran_mat( NU, N, utraj, NU );
    // ocp_nlp_out_print(nlp_solver->dims, nlp_out);

    printf("\nsolved ocp %d times, solution printed above\n\n", NTIMINGS);

    if (status == ACADOS_SUCCESS)
    {
        printf("pp_mpcc_acados_solve(): SUCCESS!\n");
    }
    else
    {
        printf("pp_mpcc_acados_solve() failed with status %d.\n", status);
    }

    // get solution
    ocp_nlp_out_get(nlp_config, nlp_dims, nlp_out, 0, "kkt_norm_inf", &kkt_norm_inf);
    ocp_nlp_get(nlp_config, nlp_solver, "sqp_iter", &sqp_iter);

    pp_mpcc_acados_print_stats(acados_ocp_capsule);

    printf("\nSolver info:\n");
    printf(" SQP iterations %2d\n minimum time for %d solve %f [ms]\n KKT %e\n",
           sqp_iter, NTIMINGS, min_time*1000, kkt_norm_inf);

    // free solver
    status = pp_mpcc_acados_free(acados_ocp_capsule);
    if (status) {
        printf("pp_mpcc_acados_free() returned status %d. \n", status);
    }
    // free solver capsule
    status = pp_mpcc_acados_free_capsule(acados_ocp_capsule);
    if (status) {
        printf("pp_mpcc_acados_free_capsule() returned status %d. \n", status);
    }

    return status;
}

Hi,

it is important to note that all settings specified through the OCP formulation object AcadosOcp are transferred into the generated code.
In contrast, all interactions with the solver AcadosOcpSolver need to be done in C again in order to get the same behavior.
Did you check what you do in your Python reference implementation with the solver object?

Best,
Jonathan

Hello FeryJo! So if the following are not set in my python ocp:

ocp.constraints.lbx = np.array([-5, -5, -5])
ocp.constraints.ubx = np.array([5, 5, 5, 5])
ocp.constraints.idxbx = np.array([7, 8, 9])

Then, is it ineffective to set the bounds for x in the generated C file? Just as you said, everything that can be set in C from the OCP model defined in Python. I found it ineffective when I set these in the generated C code. I don’t know whether it’s due to my setting steps or the problem with the OCP model definition you mentioned:

// set velocity constraints
int idxbx[] = {7, 8, 9};
for(int i = 1; i <= NSTEPS; i++){
ocp_nlp_constraints_model_set(acados_nlp_config, acados_nlp_dims, acados_nlp_in, i, "idxbx", idxbx);
}
double lbx[NX] = {0};
lbx[7] = constraint_v[0];
lbx[8] = constraint_v[1];
lbx[9] = constraint_v[2];
double ubx[NX];
ubx[7] = constraint_v[0];
ubx[8] = constraint_v[1];
ubx[9] = constraint_v[2];
for(int i = 1; i <= NSTEPS; i++){
ocp_nlp_constraints_model_set(acados_nlp_config, acados_nlp_dims, acados_nlp_in, i, "lbx", lbx);
ocp_nlp_constraints_model_set(acados_nlp_config, acados_nlp_dims, acados_nlp_in, i, "ubx", ubx);
}