Hi
I’m using python interface and c_generated_code.
In python, I set the warm start option as below.
Code
ocp.solver_options.qp_solver_warm_start = 1
In c_generated_code, however, I’m not sure that the warm start appropriately works.
To use warm start in c_generated_code, should I assign the previous optimal solution to x_init?
Or not, let me know how to use or implement warm start in c_generated_code.
Here is my code snippet in c, generated automatically.
int main()
{
pp_mpcc_solver_capsule *acados_ocp_capsule = pp_mpcc_acados_create_capsule();
// there is an opportunity to change the number of shooting intervals in C without new code generation
int N = PP_MPCC_N;
// allocate the array and fill it accordingly
double* new_time_steps = NULL;
int status = pp_mpcc_acados_create_with_discretization(acados_ocp_capsule, N, new_time_steps);
if (status)
{
printf("pp_mpcc_acados_create() returned status %d. Exiting.\n", status);
exit(1);
}
ocp_nlp_config *nlp_config = pp_mpcc_acados_get_nlp_config(acados_ocp_capsule);
ocp_nlp_dims *nlp_dims = pp_mpcc_acados_get_nlp_dims(acados_ocp_capsule);
ocp_nlp_in *nlp_in = pp_mpcc_acados_get_nlp_in(acados_ocp_capsule);
ocp_nlp_out *nlp_out = pp_mpcc_acados_get_nlp_out(acados_ocp_capsule);
ocp_nlp_solver *nlp_solver = pp_mpcc_acados_get_nlp_solver(acados_ocp_capsule);
void *nlp_opts = pp_mpcc_acados_get_nlp_opts(acados_ocp_capsule);
// initial condition
int idxbx0[NBX0];
idxbx0[0] = 0;
idxbx0[1] = 1;
idxbx0[2] = 2;
idxbx0[3] = 3;
idxbx0[4] = 4;
idxbx0[5] = 5;
idxbx0[6] = 6;
idxbx0[7] = 7;
double lbx0[NBX0];
double ubx0[NBX0];
lbx0[0] = 0;
ubx0[0] = 0;
lbx0[1] = 0;
ubx0[1] = 0;
lbx0[2] = 0;
ubx0[2] = 0;
lbx0[3] = 50;
ubx0[3] = 50;
lbx0[4] = 0;
ubx0[4] = 0;
lbx0[5] = 0;
ubx0[5] = 0;
lbx0[6] = 0;
ubx0[6] = 0;
lbx0[7] = 0;
ubx0[7] = 0;
ocp_nlp_constraints_model_set(nlp_config, nlp_dims, nlp_in, 0, "idxbx", idxbx0);
ocp_nlp_constraints_model_set(nlp_config, nlp_dims, nlp_in, 0, "lbx", lbx0);
ocp_nlp_constraints_model_set(nlp_config, nlp_dims, nlp_in, 0, "ubx", ubx0);
// initialization for state values
double x_init[NX];
x_init[0] = 0.0;
x_init[1] = 0.0;
x_init[2] = 0.0;
x_init[3] = 0.0;
x_init[4] = 0.0;
x_init[5] = 0.0;
x_init[6] = 0.0;
x_init[7] = 0.0;
// initial value for control input
double u0[NU];
u0[0] = 0.0;
u0[1] = 0.0;
// set parameters
double p[NP];
p[0] = 0;
for (int ii = 0; ii <= N; ii++)
{
pp_mpcc_acados_update_params(acados_ocp_capsule, ii, p, NP);
}
// prepare evaluation
int NTIMINGS = 1;
double min_time = 1e12;
double kkt_norm_inf;
double elapsed_time;
int sqp_iter;
double xtraj[NX * (N+1)];
double utraj[NU * N];
// solve ocp in loop
int rti_phase = 0;
for (int ii = 0; ii < NTIMINGS; ii++)
{
// initialize solution
for (int i = 0; i < N; i++)
{
ocp_nlp_out_set(nlp_config, nlp_dims, nlp_out, i, "x", x_init);
ocp_nlp_out_set(nlp_config, nlp_dims, nlp_out, i, "u", u0);
}
ocp_nlp_out_set(nlp_config, nlp_dims, nlp_out, N, "x", x_init);
ocp_nlp_solver_opts_set(nlp_config, nlp_opts, "rti_phase", &rti_phase);
status = pp_mpcc_acados_solve(acados_ocp_capsule);
ocp_nlp_get(nlp_config, nlp_solver, "time_tot", &elapsed_time);
min_time = MIN(elapsed_time, min_time);
}
/* print solution and statistics */
for (int ii = 0; ii <= nlp_dims->N; ii++)
ocp_nlp_out_get(nlp_config, nlp_dims, nlp_out, ii, "x", &xtraj[ii*NX]);
for (int ii = 0; ii < nlp_dims->N; ii++)
ocp_nlp_out_get(nlp_config, nlp_dims, nlp_out, ii, "u", &utraj[ii*NU]);
printf("\n--- xtraj ---\n");
d_print_exp_tran_mat( NX, N+1, xtraj, NX);
printf("\n--- utraj ---\n");
d_print_exp_tran_mat( NU, N, utraj, NU );
// ocp_nlp_out_print(nlp_solver->dims, nlp_out);
printf("\nsolved ocp %d times, solution printed above\n\n", NTIMINGS);
if (status == ACADOS_SUCCESS)
{
printf("pp_mpcc_acados_solve(): SUCCESS!\n");
}
else
{
printf("pp_mpcc_acados_solve() failed with status %d.\n", status);
}
// get solution
ocp_nlp_out_get(nlp_config, nlp_dims, nlp_out, 0, "kkt_norm_inf", &kkt_norm_inf);
ocp_nlp_get(nlp_config, nlp_solver, "sqp_iter", &sqp_iter);
pp_mpcc_acados_print_stats(acados_ocp_capsule);
printf("\nSolver info:\n");
printf(" SQP iterations %2d\n minimum time for %d solve %f [ms]\n KKT %e\n",
sqp_iter, NTIMINGS, min_time*1000, kkt_norm_inf);
// free solver
status = pp_mpcc_acados_free(acados_ocp_capsule);
if (status) {
printf("pp_mpcc_acados_free() returned status %d. \n", status);
}
// free solver capsule
status = pp_mpcc_acados_free_capsule(acados_ocp_capsule);
if (status) {
printf("pp_mpcc_acados_free_capsule() returned status %d. \n", status);
}
return status;
}
These hints should help other people to help you
Thanks for using acados