Algebraic states

Hello,
I wanted to ask a question regarding algebraic states. In this example, z1 and z2 are algebraic states and hence when they are added to the implicit state expression, the solver should solve z1=x1=0 and z2=x2=0. Is my understanding correct?

function model = simple_dae_model()
%% this function generates an implicit ODE / index-1 DAE model,
% which consists of a CasADi expression f_impl_expr
% that depends on the symbolic CasADi variables x, xdot, u, z,
% and a model name, which will be used as a prefix for generated C
% functions later on;

%% CasADi
import casadi.*

model_name_prefix = 'simple_dae';

%% Set up States & Controls
x1    = SX.sym('x1');     % Differential States
x2    = SX.sym('x2');
x = vertcat(x1, x2);

z1      = SX.sym('z1');     % Algebraic states
z2      = SX.sym('z2');
z = vertcat(z1, z2);

u1      = SX.sym('u1');     % Controls
u2      = SX.sym('u2');
u       = vertcat(u1, u2);

%% xdot
x1_dot    = SX.sym('x1_dot');     % Differential States
x2_dot    = SX.sym('x2_dot');
xdot = [x1_dot; x2_dot];

%% cost
expr_y = vertcat(u1, u2, z1, z2);

%% Dynamics: implicit DAE formulation (index-1)
expr_f_impl = vertcat(x1_dot-0.1*x1+0.1*z2-u1, ...
                 x2_dot+x2+0.01*z1-u2,  ...
                 z1-x1, ...
                 z2-x2);

%% constraints
expr_h = vertcat(z1, z2);
expr_h_e = vertcat(x1, x2);

%% initial value
%     x0 = [0.1; -0.1];
%     z0 = [0.0, 0.0];
%     u0 = 0;

model.sym_x = x;
model.sym_xdot = xdot;
model.sym_u = u;
model.sym_z = z;
model.expr_y = expr_y;
model.expr_f_impl = expr_f_impl;
model.expr_h = expr_h;
model.expr_h_e = expr_h_e;
model.name = model_name_prefix;

end